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A physical explanation is suggested for how the instability of certain fluid systems may 
be provoked by the addition of a ‘bottom-heavy’ density gradient. It is shown that 
in all the recent examples of this behaviour the stratification shifts the oscillation 
frequency at  the marginal state towards the diffusion rate associated with the driving 
mechanism for the instability, and this allows a more effective release of the available 
energy. When the driving mechanism is an adverse temperature gradient, for example, 
the frequency shift induced by a bottom-heavy solute distribution can increase the 
temperature change that a vertically-displaced fluid parcel acquires during each half- 
cycle, thereby enhancing the thermal buoyancy forces which drive the instability. 

1. Broad outline of the proposed mechanism 
Recent theoretical studies by Pearlstein (1977, 1979), Masuda (1978)) Roberts 

(1978)) Roberts & Loper (1979), Acheson (1978a), Soward (1979) and Fearn (1979) 
have revealed a number of fluid systems which may apparently be rendered unstable 
by the addition of a suitably strong ‘ bottom-heavy ’ density gradient. In this paper we 
suggest a physical explanation for this curious behaviour. 

Consider first the well-known explanation for the thermal over-stability of a fluid 
layer under gravity when it is heated from below but subject also to a restoring force 
of some kind. This restoring force is presumed sufficiently large that a displaced fluid 
parcel would, in the absence of diffusive processes, oscillate about its equilibrium level 
with constant amplitude. With weak thermal diffusion present, however, the tempera- 
ture of the parcel continually attempts to adjust towards that ofits latest surroundings. 
Thus, with an adverse basic temperature gradient, the parcel heats up a little during 
a downward half-cycle and arrives back a t  the equilibrium level rather lighter than it 
was a t  the beginning of that half-cycle. Buoyancy forces then make it overshoot by an 
amount greater than the previous downward displacement, whereupon the same 
process (with cooling, instead of heating, of course, above the equilibrium level) 
continues and leads to a slow growth in amplitude of the oscillations. 

This explanation holds good for a variety of different restoring mechanisms, such 
as the Coriolis force associated with rotation of the reference frame (Chandrasekhar 
1961, chap. 2), magnetohydrodynamic (Lorentz) forces (Chandrasekhar 1961, chap. 3), 
or buoyancy forces stemming from chemical (e.g. salt) stratification of the fluid 
(Turner 1974). Furthermore, an adverse temperature gradient and thermal diffusion 
form only one of many combinations by which such over-stability can be driven. In 5 2 
some of the instabilities discussed are driven by the combination of a magnetic field 
gradient and ohmic diffusion, but the explanation is essentially the same: the agency 
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which forces a parcel to depart further from its equilibrium position is being more 
seriously eroded all the time by diffusion than the agency which forces it to go back, 
and amplifying oscillations ensue. 

Returning to thermally-driven systems as (probably) the easiest ones to visualize, 
we may estimate the thermal buoyancy force which a parcel experiences as it passes 
its equilibrium level z. We first linearize the heat conduction equation for a Boussinesq 
fluid [see (3.3)] about the motionless state with a uniform vertical temperature 
gradient dT,/dz < 0. Then we seek separable solutions for the temperature field 
T = Re [ p ( x ,  y, z )  e-iot], with w real, corresponding to the case of neutral stability. In 
this way we easily show that at  the instant that any given parcel passes its equilibrium 
level from below, its temperature excess over that of the surroundings is 

dT, w / ~ s ~  AT = -h -  
d Z  1 + bJa/K2S4 ' 

where h is the amplitude of its vertical displacement, K is the thermal diffusivity, and 
s is the total wavenumber of the disturbance, which satisfies V@+s2f' = 0. On the 
downward crossing AT has the same magnitude, but the opposite sign. In  each case 
the buoyancy force, which i s  a constant multiple of AT, is such as to promote an 
increase in amplitude of the oscillations. By hypothesis (of marginal stability) this is 
just balanced by stabilizing effects associated with the restoring forces, which we do 
not need to specify in detail for the purposes of the present argument, 

The significant point is that AT has its maximum value, for a given h, when the 
frequency is equal to the thermal diffusion rate, i.e. when O / K S ~  = 1. If w / K s 2  is large, 
however, AT is much smaller than its maximum conceivable value, and this is because 
there is time during each downward/upward half-cycle for a parcel to acquire/lose 
only a rather small amount of heat. In  the extreme case K = 0, after all, AT = 0 and the 
overstability mechanism fails altogether. If w/Ks2 is small, on the other hand, AT is 
again much smaller than its maximum conceivable value, and the overstability 
mechanism is again somewhat ineffective. The reason is that thermal diffusion is fast 
enough for a parcel to acquire almost the same temperature as its local surroundings 
at  every stage of the oscillation. When displaced downward it quickly heats up, but as 
it moves back up it quickly loses most of that heat again to its surroundings and 
arrives back with quite a small net temperature and density change. 

Suppose, therefore, that we have a thermally driven system in which the above over- 
stability mechanism exists, but that for some combination of parameters W / K S ~  is small 
at marginal stability, so that the mechanism is comparatively ineffective and the 
critical adverse temperature gradient is correspondingly large. It is then comparatively 
easy to imagine how the addition of any restoring mechanism which increases the 
oscillation frequency without having any other significant side-effects might act as a 
catalyst for the overstability, by increasing the value of AT. In  particular, one can 
envisage how by chemically stratifying the fluid in a ' bottom-heavy ' way this increase 
in frequency might be achieved, and over-stability thus provoked. It would clearly be 
essential, however, for the solute diffusivity to be suitably small, because otherwise 
a downward-displaced parcel would pick up enough solute (by diffusion from the 
higher concentration in its surroundings) for the associated increase in density to 
outweigh any destabilizing effects of the enhanced heat transfer. 
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This is only a plausibility argument, of course, for even if w is increased by some 
such means it does not automatically follow that W / K S ~  will be increased, since the 
value of s at marginal stability, like that of w itself, is not a quantity that can be 
externally imposed. Nevertheless, we present in $ 2  evidence that all the recentt 
examples of ‘stable’ stratification acting as a catalyst for instability may be under- 
stood physically in these general terms, i.e. by identifying how the stratification 
affects the ratio of the oscillation frequency to the diffusion rate associated with the 
driving mechanism. These examples, for which appropriate references were given at  
the beginning of this paper, are all extremely complicated, and for this reason we 
present in Q 3 a new example which has the advantage that it is sufficiently simple to 
permit a detailed and quantitative analysis of the physical processes involved. In this 
case at least the mechanism is just as described above. It was originally hoped that the 
system in Q 3 would also constitute an example of the effect which could be realized in 
the laboratory, but despite its apparent similarity to the well-known thermo-solutal 
convection problem (Turner 1974) this is unfortunately not ao. ‘Stable’ stratification 
has an anomalous effect in the system of 5 3 only if the viscoaity is little or no greater 
than the solute diffusivity, and the author knows of no fluid with this property. The 
purpose of including that particular example is therefore purely to lend detailed 
quantitative support to the general ideas advanced above. 

2. Some specific instances of the mechanism at work? 
Thermo-solutal convection in a rotating JEuid 

Pearlstein (1977, 1979) and Masuda (1978) have considered the effect of a ‘bottom- 
heavy’ solute gradient on the oscillatory instability of a plane fluid layer of depth d 
which is heated from below while rotating about a vertical axis with angular velocity R. 
They find that destabilization can occur, so that the critical Rayleigh number is 
lowered, if K > v > K,, where v denotes kinematic viscosity and K, denotes solute 
diffusivity. The effect seems most marked at  fairly small values of r29  (more precisely, 
a2F/7r4), where 

is’the Taylor number and u = U / K  is the Prandtl number (see, for example, figure 4b 
of Masuda 1978). 

When solute stratification is absent, one may infer from the results of Chandrasekhar 
(1961, chap. 2, 3 39) that when u 5 I and a2F is large the over-stable inertial oscil- 
lations have frequency close to the thermal diffusion rate, so that the over-stability 
mechanism is at  the outset working very effectively, in the sense described in Q I ,  
For sufficiently low values of u27, however, the frequency of the inertial oscil- 
lations which the Coriolis forces are able to support inevitably falls well below the 
thermal diffusion rate, and in such circumstances it is therefore understandable that 
a bottom heavy solute gradient should render the instability mechanism more effective 
by increasing the frequency at  marginal stability. (Since K, is the smallest diffusivity, 
the stabilizing effect of the solute gradient via solute diffusion is, on the other hand, 

t Our discussion in no way explains a whole class of rather earlier and very different examples 
involving plane parallel shear flows (see Howard & Maslowe 1073, Davey & Reid 1977 for 
discussion and further references). The key distinction is that diffusive effects do not play a 
crucial role in these other examples. 

F = 4Wd*/u2 (2.1) 
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insignificant.) In order to test the applicability in this context of the ideas put forward 
in Q 1, Pearlstein (private communication) has recently carried out calculations of w / a 2  
at marginal stability, and it is notable that at the point at which the critical Rayleigh 
number is a minimum with respect to the solute stratification, this quantity is always 
fairly close to unity. 

Magnetic instabilities of a rotating strati$ed$uid 
The studies to be discussed here attempt, sometimes by means of rather simpler 
models, to infer the stability properties of a uniformly rotating fluid sphere under the 
influence of an azimuthal magnetic field B and a thermally-induced radial density 
distribution. We shall use a cylindrical polar coordinate system (r,  8, z )  and for 
simplicity consider only the most well studied case in which B is proportional to r, 
the distance from the rotation axis. For geophysical and astrophysical applications, 
the Taylor and Hartmann numbers are very large, and the stability properties then 
depend critically on two key parameters 

q = K / V  and % = V 2 / ! 2 ~ ,  (2.2) 

where V is a representative Alfvbn speed (proportional to the magnetic field), 9 is the 
magnetic diffusivity (proportional to the electrical resistivity) and !2 is the angular 
velocity. We shall take the radial density gradient to be bottom heavy, so that the 
only energy source for any instability is the magnetic field, and according to Q I the 
key quantity for consideration is then w/ys2. 

Consider first the case in which q is small, as in the Earth’s liquid core (where 
q N and take %‘ 2 1. Soward (1979) investigates a simplified model bounded 
instead by the planes z = 0,  d, with gravity acting in the negative z direction, and finds 
that a sufficiently large ‘stable ’ stratification leads to instability. The quantity w/qs2 
is small, O(q), in the marginal state (see his Q 3.3 and figure 2). One peculiar, but clearly 
understood, feature of his particular geometry is that stability is never regained, no 
matter how large the stratification. Acheson ( 1 9 7 9 ~ )  chooses instead to bound his 
model by concentric cylinders, r = rl ,  rz, with gravity acting in the negative r direction. 
Instability occurs under very similar conditions to those obtained by Soward, but 
re-stabilization takes place for a density gradient about V/q times steeper than that 
which triggered the instability. Notably, w/ys2 is then at  least of order unity, in fact 
O(‘&). In  addition to a numerical attack on the spherical problem, Fearn (1979) con- 
siders a model bounded by both Soward’s planes and Acheson’s cylinders, with gravity 
in the negative z direction, and finds instability and eventual re-stabilization at 
values of the stratification quite different to those in Acheson’s model. Nevertheless 
the ideas of 3 1 once again seem to be appropriate, for the quantity w/qs2 is small, O(q), 
when stratification triggers instability [see Fearn’s equation (B 1 1)] but O( 1) when 
re-stabilization takes place (see the end of Fearn’s penultimate paragraph). 

For astrophysical applications of the theory to radiative stellar interiors, q is large, 
and compressibility effects in the form of ‘magnetic buoyancy’ (see, e.g., Acheson 
1979a) can be important. Acheson (1978a) investigates two models of this kind, one 
with radial boundaries at r = rl ,  r2, and radial gravity, and one wholly planar model 
with straight field lines, the latter being to link up with earlier work by Roberts & 
Stewartson (1977). Despite important differences between the results of the two models 
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(cf. pp. 485, 487 of Acheson 1978a, and see also $ 5.4 of Acheson 1979a), the point at 
which stratification stops destabilizing and starts re-stabilizing coincides in each case 
with the point at which w/qs2 passes through O(1) values [and in the plane model 
w/qs2 is precisely unity a t  this point; see (7.32)-(7.34) of Acheson 1978~1.  One poorly 
understood feature is that increases in stratification in these models produce consistent 
decremes in w/qs2 at marginal stability, in contrast to one’s normal expectations, so 
this quantity falls through O(1) values a t  the change-over point. The main ideas of 
$ 1  seem no less applicable, however, for this curious fact. Inside a certain ‘critical 
radius’ in Acheson’s ( 1 9 7 8 ~ )  cylindrical model (see also Acheson & Gibbons 1978a) the 
effects of magnetic buoyancy are comparatively unimportant and the dynamics closely 
resembles that of an incompressible fluid. There is thus a link between that work and 
the large q incompressible investigations of Roberts & Loper (1979), Soward (1979, 
5 3.2) and Fearn [1979, 5 3 ( e )  and appendix B (b)], which makes the author optimistic 
that the ideas of Q 1 may go some way toward explaining those results also, but without 
further investigation of those models, particularly regarding w/qs2 and re-stabilization, 
this is somewhat speculative. 

3. A simple illustrative example 
The ideas put forward in $ 1 in fact emanated from the following study of ‘triply 

diffusive ’ convection, is. the natural extension of the well-known doubly diffusive 
convection problem (Turner 1974) to the case when an adverse temperature gradient 
contends with the presence of two bottom-heavy gradients of solute. Some interesting 
aspects of this problem have already been revealed by Griffiths (1979) and, in a very 
different (astrophysical) context (in which the same equations nevertheless apply, after 
some preliminary approximations), by Acheson & Gibbons (1978b). We are here 
concerned, however, with seeing if we can find, and then understand, the anomalous 
effect of density stratification. 

The basic equations are, in the Boussinesq approximation: 

-Du p- = - vp+pg+pvv2u ,  
Dt 

v.u = 0, (3.2) 

-- DT - K V ~ T ,  

-- Dsl - K1V2S,, 

Dt 

Dt 

-- OS2 - K 2  v2s2, 
Dt 

(3.3) 

(3.4) 

(3.5) 

p = p(1-aT+IB1Sl+/3,S2): (3.6) 

Here p denotes density, u = (u, v, w) velocity, t time, p pressure, g acceleration due to 
gravity, v kinematic viscosity, K thermal diffusivity and T temperature. The density 
depends linearly on the temperature and solute concentrations S, and S,, p denoting 
a reference density attained when all these are zero. Equations (3.4) and (3.5) describe 



728 D. J .  Acheson 

the diffusion and advection of the solutes, and their diffusivities K~ and K, have the 
same dimensions as Y and K .  

The basic state is one of no motion and hydrostatic balance, 

and we suppose that constant [so as to satisfy (3.3)-(3.5)] vertical gradients of tem- 
perature and solute are maintained between two horizontal boundaries at z = 0 and 
z = d .  These are imagined to be rigid, stress-free and perfect conductors of heat and 
solute. By considering small-amplitude disturbances for which all perturbation 
quantities 4' can be written in the form 

4' = Re [$(z)expi(kz-wt)], ( 3 4  

where Re denotes the real part, we find that d(z)cc sinmz, where m is an integral 
multiple of r / d ,  and arrive by the standard method at the following dispersion 
relationship : 

Here s E (k2 + m2)) denotes the wavenumber and 

(3.10) 

These quantities are all positive in the circumstances which we wish to investigate, and 
they all have dimension (frequency),; indeed Rf and RS are the frequencies at which 
a displaced parcel would bob up and down under the influence of an individual solute 
gradient, all other processes, including diffusion, being neglected. The symbols in 
(3.10) are intended as an aid to the memory: D represents the driving mechanism for 
the instability, while Rl and R, represent the two restoring agencies. We also introduce 
for convenience the parameters 

crl s KJK, crz E KJK. (3,11), (3.12) 

While we have omitted the details of the analysis, one relationship between the 
perturbation variables will turn out to be of great value. If we consider the vertical 
displacement E' of a given parcel from its equilibrium position, so that w' = ag'/at, then 

(3.13) 

In  the absence of diffusion, (3.9) predicts instability if and only if the net density 
increases with height. We shall suppose that this is not the case, taking 

D < Rl+R,. (3.14) 

Indeed, we shall soon focus attention on situations in which D is very much less than 
Rl + R,, instability being made possible only by a large disparity between the value of 
K and the values of K~ and K,. 

Let us now assume that the thermal diffusivity exceeds the solute diffusivities, so 
that K > K~ andK > K ~ .  It is easy to show that any mode of instability is then oscillatory. 
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In the investigation of this overstability, the following procedure appears to be quite 
revealing. Rewrite (3.9) as 

The real part of this gives, at marginal stability (i.e. w real), 

while the imaginary part gives 

Finally, multiply (3.17) by w2 and subtract the result from (3.16) to obtain 

(02 + K2S4). 

(3.16) 

(3.17) 

(3.18) 

We may regard (3.18) as an expression for the critical temperature gradient, measured 
by D, with w being calculated from (3.17). 

After some exploration we find the desired anomalous effect in the following 
(hypothetical) parameter regime: 

(3.19) Rid2 N Rad2 N K $ K, N K~ N u. 

From (3.17) we obtain to first approximation 

(3.20) 

Inspection of (3.18) reveals the possibility of keeping its first two terms as small as 
about alR1, but no smaller, since K $ K,. This can only be achieved, however, if 
w $ K ~ s ~ ,  because otherwise both terms are larger by a factor of order K2/K; .  Thus from 
(3.20) the frequency must be given to good approximation by 

w2 = (R, + R,) k2/s2, 
and (3.18) then becomes 

(3.21) 

(3.22) 

We can next use (3.21) to eliminate w from (3.22), and we then minimize D with respect 
to k and m by choosing 

k = 7~/(2td), m = r / d .  (3.23) 
We thus obtain 

D = [ ( ~ ~ + o ) R ~ + ( a ~ + a ) R , 1 [ 1 + ~ $ ~ ~ ~ ] .  

Alternatively, introducing the dimensionless parameters 

(3.24) 

(3.25) 

we may write (3.24) as 

9 = (a, + a) (9, +&a) [ 1 + (a, + W,)-1]. (3.26) 
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It is evident from (3.26) that, as we increase 9, from zero, 9 will initially decrease, 
so that instability is facilitated, if the parameter 

a = ( c 2  + c)/(q + c) (3.27) 

is sufficiently small. By differentiation we easily obtain the following precise condition 
for this to happen: 

a < (1 +g1)-1. (3.28) 

The effect of g2 on the stability boundaries is illustrated in figure 1, where 9 is regarded 
as fixed. When B2 = 0 instability occurs for the system in figure 1 (a) if g1 is less than 
0.2, while figure 1 ( b )  is for a system with a rather larger 9 and instability occurs when 
g1 drops below unity, again if W, = 0. The critical values of g1, given 9, are plotted 
(horizontally) in each case against 9, for four different values of a, and there is 
instability to the left of such curves and stability to the right. Looking at the curve for 
a = 0.2 in figure 1 (a),  for example, we see how any originally stable system with 
3, greater than 0.2 but less than about 0.53 is initially rendered unstable when 9, 
reaches some value less than unity, but then becomes stable again as 9, is increased 
further. It is evident from these curves that with smaller values of a a still larger value 
of W, is needed before the second solute begins to play a stabilizing role, and this may 
be seen by inspection of (3.26). On comparing figures 1 (a )  and 1 ( b )  it is also clear that, 
given a, the anomalous effect is more pronounced when the critical value of 9, in the 
absence of the second solute is small, i.e. when the frequency of oscillation associated 
with the first solute gradient is less than the thermal diffusion rate. This is of course in 
keeping with the ideas put forward in $1.  

The present example, however, is so simple that we can investigate the precise 
nature of the physical mechanism more deeply. In the regime (3.19) we have 
w 9 K ~ S ~  - K ~ s ~ ,  and we also have, from (3.24), that D N ulRl - u,R,. Since c1 and 
u, are small we may therefore approximate (3.13) by 

p^ = p&Rl + R, + i6)/g (3.29) 

where 6s- 0 1+K2S4/U2 -ulRl-u2R2).  (3.30) 

Notably, if viscosity were absent (3.22), which leads directly to the marginal stability 
equation (3.24), could be written 6 = 0. Putting the matter another way, if D exceeds 
D,, the critical value for instability, then comparing (3.22) with (3.30) we see that 
6 > 0, and bearing in mind (3.8), this means that when D > D, the actual (real) 
perturbation density p’ at any fixed point oscillates in such a way as to lag slightly 
behind the displacement field 5‘. 

There are three separate contributions to this discrepancy between the parcel density 
and the ambient density as it passes its equilibrium position, of course, and the three 
terms in (3.30) represent the density changes which a parcel experiences by exchanging 
heat, first solute and second solute respectively with its surroundings. When below its 
equilibrium position it loses density by heating up, but it also inevitably acquires some 
solute by diffusion, and the first effect must outweigh the second if the parcel is to be 
‘light’ on return to its equilibrium position. We have assumed that K~ and K~ are small, 
in the sense that the solute diffusion rates are much less than the oscillation frequency. 
As a result, the density change due to diffusion of each solute is small and simply 
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FIGURE 1. Two stability diagrams for different prescribed adverse temperature gradients, each 
plotted for four different (labelled) values of a = ( K ~  + Y ) / ( K ~  + v) < 1. The parameters&?’, and9,  
act m measures of the two bottom-heavy solute gradients (see text). Instability occurs to the left 
of each curve and is at  first promoted by increasing.%*. 

proportional to the solute diffusivity and (via R, or R,) the concentration gradient, for 
obvious reasons. The density change resulting from heat diffusion has a more com- 
plicated form, however, as a consequence of our assumption in (3.19) that K is quite 
large, and the dependence of the first term in (3.30) on the key quantity KS,/W is not 
monotonic. It has a maximum possible value of SD when w = m2, but the actual value 
is a good deal smaller than this if the oscillation frequency is either much smaller or 
much larger than the thermal diffusion rate, as argued in 0 1. 

Ignoring viscous effects entirely for a moment, let us suppose that the system is 
stable when €2, = 0. As we have remarked, this would imply that 8 < 0 when R, = 0. 
Inspection of (3.30) and (3.21) reveals quite clearly that if R, is increased from zero it 
has two effects. It increases w ,  and unless the original value of w greatly exceeded K S ~  

[which our hypothesis (3.19) effectively excludes] this leads to a significant increase in 
the thermal term D / (  1 f K ~ S * / O ~ )  in (3.30), which promotes instability. On the other 
hand it also introduces a negative term - u2 R, which represents additional density 
acquired (lost) by the parcel due to second solute diffusion on the downward (upward) 
journey, and this is a stabilizing effect. With only one solute present the latter effect 
always ‘wins’, and increasing Rl with R, = 0 simply acts as a stabilizing influence, as 
may be checked from (3.24). It is evidently reasonable, however, that if K ~ / K ,  is 
sufficiently small, increasing the bottom-heavy gradient of a second solute need make 
no significant difference to the (stabilizing) amount of solute acquired by a parcel by 
diffusion, while at the same time it may increase the oscillation frequency to a value 
which brings the heat exchange between a parcel and its surroundings closer to that 
needed for the optimum performance of the over-skability mechanism. 

When viscous effects are present h o w  w t?? , ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
instability, in fact given by (3.22): 

Comparing this with (3.30) we see that if, as in reality, v greatly exceeds the solute 
diffusivities K, and K,, the viscous drag forces on the parcel are so much more significant 

6 > vws4/k2. (3.31) 
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than the buoyancy force fluctuations wrought by solute diffusion as a stabilizing 
mechanism that no amount of juggling with these diffusivities can achieve the desired 
end; a is almost unity if v B K ~ ,  K ~ .  

4. Concluding remarks 
We have attempted to explain in simple physical terms a number of recent examples 

in which linear theory predicts that ‘stable ’ density stratification acts as a catalyst for 
instability. In  all cases (multiply) diffusive effects were crucial to the argument, which 
applies only to instabilities of oscillatory type, i.e. ‘ over-stability ’. The unifying idea 
was that the over-stability mechanism, whether thermal or otherwise, works most 
effectively when the oscillation frequency and the diffusion rate associated with the 
driving mechanism are closely matched at  marginal stability. ‘Stable ’ density 
stratification can destabilize the system by shifting the oscillation frequency so as to 
produce a better match. 

While we have focused attention on the anomalous effect of bottom-heavy density 
gradients, the ideas may in principle apply to other systems in which an ingredient 
normally found to be a restoring or stabilizing force has the opposite effect. One such 
example is the way in which the thermal instability of a rotating fluid layer may be 
facilitated by the addition of a uniform vertical magnetic field. The usual expla.nation 
for this (see, e.g. Acheson 19783) is satisfactory when the instability occurs as steady 
convection, but Acheson (19793) has recently argued that when the instability occurs 
in an oscillatory manner at high values of q the mechanism responsible is instead the 
one discussed in this paper. Certainly, when the critical Rayleigh number is plotted 
against the field strength the point a t  which the curve has a minimum coincides with 
that at which w / m 2  = 1 in the marginally stable state. 

I wish to thank Mr A. J.Pearlstein and Dr D. Fearn for communicating their 
unpublished results. Helpful comments from Mr R. W. Griffiths, Professor J. S. Turner 
and two anonymous referees led to improvements in the paper. Much of the work was 
carried out a t  Monash University, and I am very grateful to the members of the 
Mathematics Department, in particular Professor B. R. Morton, for their kind 
hospitality. 
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